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Abstract. We state the intrinsic form of the Hamiltonian equations of first-order classical field
theories in three equivalent geometrical ways: using multivector fields, jet fields and connections.
Thus, these equations are given in a form similar to that in which the Hamiltonian equations of
mechanics are usually given.

Then, using multivector fields, we study several aspects of these equations, such as the
existence and non-uniqueness of solutions, and the integrability problem. In particular, these
problems are analysed for the case of Hamiltonian systems defined in a submanifold of the
multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian
equations is considered, and the relation betwE€antan—Noether symmetrieand general
symmetrief the system is discussed. Noether's theorem is also stated in this context, both
the ‘classical’ version and its generalization to include higher-order Cartan—Noether symmetries.
Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.

1. Introduction

The geometric structures underlying the covariant Lagrangian description of first-order field

theories are first-order jet bundI¢$E i E 5 M and their canonical structures (see [8], and
references therein). For the covariant Hamiltonian formalism several formulations arise, which
use different kinds of differentiable structurgmlysymplectick-symplectick-cosymplectic

or multisymplectidorms) andmultimomentum phase spaagiere the formalism takes place
(see, for instance, [1,5, 13,15, 16,23, 24,28, 31, 34]).

In any case, a subject of interest in the geometrical description of the Hamiltonian
formalism of classical field theories is related to the field equations, which are called
the Hamiltonian equations In the multisymplectic models, both in the Lagrangian and
Hamiltonian formalisms, the field equations are usually written using the multisymplectic
form in order to characterize the critical sections which are solutions of the problem [8,12,14].
This characterization can be derived from a suitable variational principle.

However, other attempts have been made to write these field equations in a more
geometric—algebraic manner (as is done in mechanics, using vector fields); namely by using
Ehresmann connectior25, 36], jet fields[8], or multivector fieldd14,20-23]. All of them
have been carefully studied in [9] for the Lagrangian formalism of field theories, and their
equivalence demonstrated. The aim of this work is to carry out the analysis of these procedures
for the Hamiltonian formalism, proving that all of them are equivalent and using, in particular,
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the multivector field formulation to study the existence and non-uniqueness of solutions of these
equations, and their integrability. Furthermore, equivalence theorems between the Lagrangian
and Hamiltonian formalisms are stated. Thus, previous works of Kanatchikov devoted to the
analysis of the field equations in the Hamiltonian formalism using multivector fields (in a more
specific context), are completed.

Another subject of interest is the study of symmetries. Again using the multivector field
formalism, we introduce and characterize different kinds of symmetries which are relevant in
field theory, showing their relation. In particular, Noether’s theorem is proved and generalized
in order to include higher-order Noether symmetries.

The paper is structured as follows: in section 2 we review the construction of Hamiltonian
systems in field theory. Section 3 is devoted to setting the Hamiltonian field equations
in terms of multivector fields, connections and jet fields (showing the equivalence of three
methods), analysing the existence and non-uniqueness of solutions (in the regular case), and
their integrability. Sections 4 and 5 deal with the study of symmetries, first integrals and
Noether’s theorem. In section 6, the case of restricted Hamiltonian systems is considered
(those where the equations are defined in a submanifold of the multimomentum bundle).
Hamiltonian systems associated with Lagrangian systems are treated in section 7, including
the equivalence between the Lagrangian and Hamiltonian formalism (for the hyper-regular
case). In section 8, an example which is a quite general version of many typical models in
field theories is analysed. The last section is devoted to presenting the conclusions. The work
ends with an appendix where the main features concerning multivector fields and connections
are reviewed.

All manifolds are real, paracompact, connected aid All maps areC*. Sum over
crossed repeated indices is understood. Throughout this papéf — M will be a fibre
bundle (dimM = m, dmE = N + m), whereM is an oriented manifold with volume
form w € Q™"(M), andzn! : J'E — E will be the jet bundle of local sections of.

The mapz! = 7 ont : JYE — M defines another structure of differentiable bundle.
Finally, (x, y*, v} will be natural local systems of coordinatesJAE (u = 1,....m;
A=1,...,N).

2. Hamiltonian systems

The Hamiltonian formalism for first-order field theories requires the choice of a
multimomentum phase space. This choice is not unique. In [10, 11], the relations among
some of them are shown and, in particular, the following result is proved (see also [5, 30]).

Theorem 1. Letw : E — M be afibre bundle. Then the following bundles are diffeomorphic:

(1) ATT*E/n*A"T*M (WhereATT*E = M is the bundle ofn-forms onE vanishing by
the action of twor-vertical vector fields).

(2) Aff (JYE, m* A" T*M)/m* A" T*M (whereAff (J1E, =* A" T*M) denotes the set of affine
bundle maps frord*E to 7* A" T*M).

3) 7*TM QV*(r) @ w* A" T*M (whereV*(;r) denotes the dual bundle ¥f(r) = ker Trxr).

Thus, we take these equivalent bundles as our multimomentum phase space, and call it
themultimomentum bundléVe denote it by/** E, and its points a§ € J'*E. For the natural
projections we will writer! : J¥E — E and7! =7 ot : J™*E — M. Given a system of
coordinates adapted to the buneéle E — M, we can construct natural coordinates/itf E
and M, which will be denoted aéc”, y4, p) and(x*, y4, pi, p), respectively.
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In order to complete the geometric background of the Hamiltonian formalism, the
multimomentum bundle must be endowed with a geometric structure which characterizes the
system. Thus, we can constriitdmiltonian systemis three different ways [5,11, 13,26, 34].

First, the multicotangent bundl&”T*E is endowed with canonical forms [4]® €
Q"(A™T*E) and the multisymplectic fornf2 := —d® e Q"Y(A"T*E). But Mz =
ATT*Eisasubbundle oA”T*E. Then, ifA : ATT*E — A™T*E is the natural embedding,
® = A*@ and Q2 = —d® = A*Q are canonical forms inVz, which are called the
multimomentum Liouville: and(m + 1) formsof M. In a system of natural coordinates in
M we have

© = phdy* Ad"tx, + pd"x Q= —dph Ady* Ad"tx, —dp Ad"x.

A sectionh : J¥¥E — M of the projectionu : Mx — J¥E is called aHamiltonian
section TheHamilton—Cartarvz and(m + 1) formsassociated with the Hamiltonian section
h are

0, =h*0 Q, =h"Q = —dO,.

Using natural coordinates id'* E, a Hamiltonian section is locally specified byl@cal
Hamiltonian functiont € C*(U), U ¢ J¥E, such thak(x*, y4, py) = (x*, yA, pli, p =
—H(x”, yB, py)). Therefore, ift*» = d"x = dx! A... A dx™, the Hamilton—Cartan forms
take the local expressions

0 = phdy* Ad" 1y, — Hd"x Q, = —dpy Ady? Ad"x, +dH A d"x 1)
where d'1x, = i(;2)d"x.

A variational problem can be posed for the systeit E, ©2,,): the states of the field are
the sections of! which are critical for the functional : I'.(M, J**E) — R defined by
H®) = [, ¥*0,, for everyy € T'.(M, J**E); wherel' (M, J*E) is the set of compact
supported sections af. As is known [8, 11], these critical sections are characterized by the
conditiony*i(X)Q;, = 0, for everyX e X(J¥E), which in natural coordinates " E, is
equivalent to demanding thgt = (x*, y*(x), p;(x)) satisfies the equations

_ 9H 9H
=2 S
v Paly " Iyly

which are known as thelamilton—-De Donder—Weyl (HDW) equationBut, asH is a local
Hamiltonian function, these equations are not covariant; that is, they transform in a non-trivial
way under changes of coordinates (see [5]).

The way to overcome this problem (and get a system of covariant equations) consists in
using a connection. In fact, a connecti@nn the bundler : E — M induces a linear section
jv . J¥E — M of the projectionu [5,11]. Then, we can construct the differentiable forms

e = /50 QY = —doY = j;Q

Iphy
oxH

ByA
axH

)

which are called theiouville m and(m + 1) formsof J* E associated with the connecti®h
Using natural coordinates in** E and M, if V = dx* ® (5% + ' 5%), then we have that

ax W
Jv@t, yA, p) = (&t yA, it p = —piT}), and
Y = phdy* Ad" 1, — pﬁ[’;‘d’”x

QY = —dpyy Ady* Ad" T x, + d(pﬁl"l/j) Ad"x.

Now we have the following result.

Lemma 1. If iy, by : J¥E — M are two sections of, thena]® — h3® = hy — ho.
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Proof. On the one hanth}® — h30 € Q™ (J¥*E). On the other handy; — hy : J¥E —
Mm = ATT*E has its image imr* A" T* M, becausé, &, are sections of.. But we have a
naturalinclusionr* A" T*M < A™T*J*E given by means ofthe projectiof : J¥E — E.
Finally, the equality follows from a trivial calculation using natural coordinates. O

Therefore, given a connection and a Hamiltonian sectiol, from this lemma we have
that
jv—h=ji0-ne=0"-0,=H
is atl-semibasian-form in J¥*E. It can be written ag{y = H7' w, where He C*(J*E)
is the(global) Hamiltonian functiorassociated with,’ andw. Then, we can define
0) =0" —HY Q) = —dey, = Q" +dH)
which are called thédamilton—Cartanm and (m + 1) formsof J*E associated with the
Hamiltonian sectiork and the connectioR. Their local expressions are
Oy = phdy* Ad"x, — (H+ piTHd"x
Q) = —dpf Ady* A dm_lxu +dH+ pZFﬁ) Ad"x
where H is a global Hamiltonian function, whose relation with the local Hamiltonian function

H associated with the Hamiltonian sectibis H = H — pfjl“ﬁ (in an open sev). In field

theory, everyr'-semibasien-form in J*E is usually called alamiltonian density
As in the above case, the variational problem for the systéthE, Q)) leads to the
following characterization of the critical sections:

VX)) =0 for everyX € X(J¥E) (4)

which, in natural coordinates ii**E, is equivalent to the local equations (for the critical

sectionsy = (x, y*(x), ps(x)))
ay4 oH oH ors
= =<—M+r;‘> =_(_A+p; A)‘ (5)
dx v opy v v ay ay v
which are covariant, and are called tHamiltonian equationsf the system.
If, conversely, we take a connectiovi and a Hamiltonian densit§{, then making

jv—H = hy we obtain a section @f, thatis, a Hamiltonian section, becadse J*E — M
takes values ik* A" T* M. Hence we have proved the following proposition.

®3)

aph
dxH

Proposition 1. A couple (k, V) in J¥E is equivalent to a couple(H, V) (that is,
given a connectiorV, Hamiltonian sections and Hamiltonian densities are in one-to-one
correspondence).

Bearing in mind this last result, we have a third way of obtaining a Hamiltonian system,
which consists of taking a coupiét, V), and then defining

0y, =0Y —H Qy, == —dO), = Q¥ +dH

which are theHamilton—Cartann and(m + 1) formsof J** E associated with the Hamiltonian
density H and the connectiotvV. Their local expressions are the same as in (3), with
H = Hi%w.

Summarizing, there are three ways of constructing Hamiltonian systems in field theory,
namely:

¢ Giving a Hamiltonian sectioh : J¥*E — M.
e Giving a couple(h, V), whereh is a Hamiltonian section an& a connection in
7. E— M.
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e Giving a couplg'H, V), whereH is a Hamiltonian density.

In each case, we can construct the Hamilton—Cartan forms and set a variational problem, which
is called theHamilton—Jacobi principleof the Hamiltonian formalism. As we have said, the
second and third way are equivalent.

From now on, a coupléJ*E, Q)), or equivalently(J**E, Q},), will be called a
Hamiltonian system

3. Hamiltonian equations, multivector fields and connections

We can set the Hamiltonian field equations using jet fields, connection forms and multivector
fields (see the appendix for notation and terminology).

First, an action of jet fields on forms is defined in the following way [8, 9]: consider
the bundle J*(J**E) (the jet bundle of local sections of the projectidf), which is
an affine bundle ovey™E, whose associated vector bundlefi§T*M ®; V(71). We

have JI(J¥E) - J¥E oM. Y : J¥E — JYJYE) is a jet field, a map
Y : X(M) — X(J¥E) can be defined as follows: for eveFye X(M), Y(Z) € ¥(J¥E) is
the vector field given bY(2) () := (Tz5,¥)(Zz15), for everyy € J¥E andyr € V(). If
Y=y ph, FA(x,y, p), G4, (x, y, p)), its local expression is

- d d 0 d
H )= —+FA G — ).
y<f 8xﬂ> ! <8x" K3y A“apﬁ>
This map induces an action 9f on the forms inJ¥E. In fact, leté € Q"*(J¥E), with
k > 0, we define @)t : X(M)x "> xX(M) —> Q*(J¥*E) given by

[(OE)(Zas -, ZIGs X1y oo Xi) =6 V(Z0), -, V(Zn)s X -, Xp)

forZy, ..., Z, € X(M)andXy, ..., X; € ¥(JYE). Itis aC>®(M)-linear and alternate map
on the vector fieldgy, . . ., Z,,. TheC>®(J¥E)-linear map {)) so defined, extended by zero
to forms of degree < m, is called thenner contractionwith the jet field). Then, given
lemma 2, the following theorem can be proved [8, 9].

Lemma 2. If Y is an integrable jet field and € Q"*1(J¥E). Theni())& = 0if, and only
if, the integral sectionsy : M — JYE of ) satisfy the relationy*i(X)¢ = 0, for every
X e X(J¥E).

Theorem 2. Let (J™*E, Q2)) be a Hamiltonian system. The critical sections of the Hamilton—
Jacobi principle are the sectiong e TI'.(M, J¥E) satisfying any one of the following
conditions:

(1) They are the integral sections of an integrable jet figld: J**E — J1(J¥E) satisfying
thati(Vx)Q) = 0.

(2) They are the integral sections of an integrable connecligrsatisfying thai(V;) ) =
(m —1)Qy.

(3) They are the integral sections of a class of integrable &attansverse multivector fields
{Xxn} C X" (J¥E) such that (X)) = 0, for everyXy € {Xy}.

Proof. Critical sections are characterized by equation (4). Then, using the above lemma with
& = Q), we obtain the equivalence between (4) and condition (1).
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For the second condition it suffices to use the expression in natural coordinates of a

connection
d i d
— dx# _ A_T P
VH_dx ®(8xﬂ+F“8yA A“apﬁ)

Hence, bearing in mind the local expression (3), we prove that the condiVop®, =
(m — 1)) holds for an integrable connection if, and only if, the Hamiltonian equations (5)
hold for its integral sections (see [25, 36]).

Finally, condition (3) is a direct consequence of the equivalence between orientable and

integrable jetfieldy : J*E — J1(J¥*E), and classes of locally decomposalifetransverse
and integrable multivector fields(} c X" (J¥E). O

Thus, in Hamiltonian field theories we search for (classegbfransverse and locally
decomposable multivector fields, € ¥” (J¥*E) such that:

(1) The equation(iX;)$2) = 0 holds.
(2) Xy are integrable.

A representative of the class of multivector fields satisfying the first condition can be selected
by demanding thai(X)(f%*w) = 1. Then its local expression is

" d a d
Xy = (—+FA—+G" —) (6)
M/=\1 R Alg ph
Concerning the second condition, let us recall thatXif,} ¢ X" (J¥E) is a class of locally
decomposable antt-transverse multivector fields, théfy, is integrable if, and only if, the
curvature of the connection associated with this class vanishes everywhere.

Definition 1. X», € X"(JY¥E) will be called a HDW-multivector field for the system
(J™E, @)) ifitis Ti-transverse, locally decomposable and verifies the equation)2) =
0.

We denote the set of HDW-multivector fieldskifis,, (J*E, Q).

Theorem 3 (existence and local multiplicity of HDW-multivector fields). Let (J¥*E, Q)
be a Hamiltonian system.

(1) There exist classes of HDW-multivector fieldsy} C Xipw(J¥E), (and hence
equivalent jet fieldsyy, : J'E — JY(J¥™E) with associated connection formg;,
satisfyingi (%)) = 0andi(Vy)Q) = (m — 1)), respectively).

(2) In a local system the above solutions dependvgm? — 1) arbitrary functions.

Proof.

(1) First we analyse the local existence of solutions and then their global extension.
In a chart of natural coordinates in*E, the expression of2) is (3); and taking the
multivector field given in (6) as representative of the cléxs,}, from the relation
i(X#)QY = 0 we obtain the following conditions:
e The coefficients on gy must vanish:
aH
O=F'-— —TI} (for everyA, v). (7)
Ipy

This system ofVm linear equations determines unequivocally the functiBs
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e The coefficients on ¢! must vanish
oH ars
— n . v v
0=0Gy, + ayA +pp ayA
which is a compatible system of linear equations on th&¥m? functionsG .
e Using these results we obtain that the coefficients.ohvanish identically.
These results allow us to assure the local existence of (classes of) multivector fields
satisfying the desired conditions. The corresponding global solutions are then obtained
using a partition of unity subordinated to a cover/df E made of natural charts.
(Note that, ify = (x*, yA(x"), p/y(x")) is an integral section of (resp.)), then
_ oyt

ax,

(A=1,...,N) (8)

apl
GKH oY = _836_2
and then equations (7) and (8) are the Hamiltonian equationg.jor
(2) In natural coordinates in'* E, a HDW-multivector fieldX;, € {X5} is given by (6). So,
it is determined by thevm coefficientsF# (which are obtained as the solution of (7)),
and by theNm? coefficientsG/; , which are related by th& independent equations (8).
Therefore, there ar® (m? — 1) arbitrary functions. O

A
Fioy

Finally, we try to determine if it is possible to find a class of integrable HDW-multivector
fields. Hence we must impose that the corresponding multivector Neldverify the
integrability condition; that is, the curvature of the associated connedfigrvanishes
everywhere:

B B B B B B
0— aF,] +FA3F,’ e aFn _BFM _FAaFM e 8FM
dxi H gyA Brgph  xn T 9y Ar g ph

P P
o aGY, o 8G3M>

0
) (dx" A dx") ® 8)}_3

dxhk Hogya ALy ph dxn T ogyA A1 ph

P P P P
. (BGB,] +FA8GB,7 co Gy, 0Gh,

d
x(dx* Adx™) ® 7
B
or, equivalently, the following system of equations hold (foxJu < n < m):

B B B B B B
L L R L L L L L
dxr F gyA Ay ph dxn Ty AT ph
__0°H  0H 9°H G 9%H 92H
 dxrdpy  oplhoyropy  Mophopy  oxopy
2 2
_0H 9°H o 92H ©)
Ip)y dyAapl "ophopy
p 0 p 0 o p
o 2G5y, a0Gh, , oy 0Gh 3Gh  .3G5, ., 3G,
dxH *ogy4a ALy ph 0x" T 9yA AT
_ Gy, 9H Gy, ., 3G, 4Gy, aH aGh, ., Gy,
oxraplhy ayt  TMaph Bxn aph ayh M ap)y

(10)
(whereH =H +p;}1“ﬁ§, and use is made of the Hamiltonian equations). Since these additional

conditions on the function§’;, must be imposed in order to assure thatis integrable, the
number of arbitrary functions will be, in general, less thafn? — 1).
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As far as we know, since this is a system of partial differential equations with linear
restrictions, there is no way of assuring the existence of an integrable solution, or of selecting
it. Observe that, considering the Hamiltonian equations for the coefficdihi@quations (8)),
together with the integrability conditions (9) and (10), we hH\ﬂ%Nm(m—l) linear equations
and%Nmz(m —1) partial differential equations. If the set of linear restrictions (8) and (9) allow
us to isolateV + 3 Nm(m — 1) coefficientsG'; , as functions on the remaining ones and the set
of %Nmz(m — 1) partial differential equations (10) on these remaining coefficients satisfies
the conditions orCauchy—Kowalewska'’s theord@l, then the existence of integrable HDW-
multivector fields (inJ*E)) is assured. If this is not the case, we can eventually select some
particular HDW-multivector field solution, and apply the integrability algorithm developed
in [9] in order to find a submanifold — J*E (if it exists), where this multivector field is
integrable (and tangent ).

Other results concerning the expression of the Hamiltonian equations in terms of
multivector fields can be found in [20-23], where the definition of Poisson algebras in field
theories is also given (see also [5]).

4. Symmetries and first integrals

Next we recover the idea difst integral or conserved quantityand state Noether’s theorem
for Hamiltonian systems in field theory, in terms of multivector fields. In this sense, a great part
of our discussion is a generalization of the results obtained for non-autonomous (non-regular)
mechanical systems (see, in particular, [27] and references therein). In the appendix we review
the definition of the basic differential operations on the set of multivector fields in a manifold.
Consider a Hamiltonian syste@* E, Q). Let

ker" Q) :={Z e X"(J¥E); i(2)Q) =0}
and let kef' @Y c X" (J*E) be the set ofn-multivector fields satisfying

i(X)Q) =0 i(X) (7Y w) # 0. (11)
These arer!-transverse multivector fields (but not locally decomposable, necessarily) and,
as usual, we can select a representative on each equivalence class of solutions by demanding
that i(X)(7¥*w) = 1. Remember that HDW-multivector fields are solutions of (11) which
are locally decomposable. Then,af,n,, (/2 E, 2Y) denotes the set of integrable HDW-
multivector fields, we obviously have that

oW (IYE, @) c Xnow(JYE, Q)) c ker" Q) c ker" ).
Now we introduce the following terminology [12, 27].

Definition 2. A first integralor a conserved quantitgf a Hamiltonian systert/*E, @) is
aformé e Qm~1(J¥*E) such thatL (X)& = O, for everyX € ker” QY.
Observe that, in this case(X)¢ = (—1)"*1i(X)dE.

Proposition 2. If ¢ € Q""1(J¥E) is a first integral of a Hamiltonian systetd*E, 2)),
and X € ker” @ is integrable, thei§ is closed on the integral submanifolds)f That is, if
js : S < J¥E is an integral submanifold of, thendji& = O.

Proof. Let X1,...,X,, € X(JY¥E) be independent vector fields tangent to the- (
dimensional) integral submanifoll ThenX = fX; A ... A X,,, for somef € C*(J¥E).
Therefore, as(iX)dé = 0, we have that

JAAE(Xy, ..., X)] = jEi(X1 A ... A X,)dE = 0.

Conserved quantities can be characterized as follows.
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Proposition 3. If £ € Q"~1(J™E) is a first integral of a Hamiltonian syste@ *E, Q)),
thenL(2)¢é = 0, for everyZ € ker" Q).

Proof. Consider the conditions (11), withiX)(7%*w) = 1, and letX, € ker” Q) be a
particular solution. Then, any other solution can be obtained by makiXig+ Z, with
Z e ker" QY nker"(t¥*w) and f € C*°(J¥E). Thus we have that

ker" Q) = {fXo +ker" Q) Nnker" (% w); f € C*(J¥E)} C kerQ) .

Then, foreveryZ e ker” Q) nker” (**w), we have thaZ = X;— X, with X1, X, € ker” Q)
such that(X1) (T%w) = i(X2) (T w). Hence, ift is a first integral, we have that )¢ = 0.
On the other hand, takingo € ker? @, for everyZ € ker” ) we can write the identity

Z=(Z-i(2&)T¥w)Xo) +i(2)(T¥w)Xo.
Then, if i(Xo) (7™ w) = 1, it follows thatZ — i(2)(T%*w) X, € ker" Q) Nker" (t%*w), hence
L(2)§ =L(Z - () THw)X0)§ +L((2)(T"w)X0)§ = (-)""(2)(TH0)i(Xo)ds =0
since di{Xy)&y = 0, becauséy € Q" L(J*E). O
The converse of this statement holds obviously, and hence this is a characterization of first

integrals.
Next we introduce the following terminology (which will be justified in theorem 4).

Definition 3. An (infinitesimal) general symmetryf a Hamiltonian systen/*E, Q) is a
vector fieldY € X(J*E) satisfying tha{Y, ker” )] C ker” ).

Bearing in mind the properties of multivector fields (see the appendix), we obtain that
general symmetries have the following basic properties:

e If Y € X(J¥*E) is a general symmetry, then solist+ Z, for everyZ e kerQy.
o If Y1, Y, € X(J¥E) are general symmetries, then so¥s, [V2].

A first characterization of general symmetries is given by the following lemma.

Lemma 3. Let(J**E, ©)) be a Hamiltonian systen¥, € X(J*E), and letF, be a local flow
of Y. Y is a general symmetry if, and only if;..(ker" Q) C ker” 2, in the corresponding
open sets.

Proof. Asker" )’ is locally finite-generated, we can take a local basis . ., Z, of ker” @Y,

and then the assertion s equivalent to proving thaZ}] = f/ Z; if, and only if, F,. Z; = ¢/ Z;
(foreveryi =1,...,r), Wheregij are differentiable functions on the corresponding open set,
also depending on ‘ _

Itis clear that, ifF,..Z; = g/ Z;, then Y, Z,] = f/ Z;.

For the converse, we have to prove the existence of funcgilbsach thatF.Z; = gl.j Zj.
Suppose thaty], Z;] = f/Zj, and remember tha%|,:SF,*Zi = F[Y, Z;]. Hence, on the
one hand we obtain

FulY. Zil = Fu(f/ Z)) = (F; Y f FuZy = (F7Y £ (8520
and on the other hand, we have that

d d
dr dr

dgt
8 Z=—*

Ft*Zi = ar

t=s

Zk.

t=s t=s
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Therefore, comparing these expressions, we conclude that
dgf _
dr
This is a system of ordinary linear differential equations for the functignsvhich, with the

initial condition g¥(0) = s¥, has a unique solution, defined for evergn the domain of;.
Then, taking this solution, the result holds. O

(F7YH 8.

Using this lemma, we can prove the following theorem.

Theorem 4. LetY € X(J¥*E) be a general symmetry of a Hamiltonian systett E, ),
and F; a local flow ofY.

(1) If Z € ker" @) is an integrable multivector field, thef transforms integral submanifolds
of Z into integral submanifolds of;,. Z.

(2) In particular, if Y € X(J¥E) is t-projectable, andXy € X[,pw (JYE, Q)), thenF,
transforms critical sections aX, into critical sections ofF,, X, and henceF,, Xy €
Xitiow (T E, 2)).

Proof.

(1) LetXy, ..., X, € X(J¥E) be vector fields locally expanding the involutive distribution
associated witt2. ThenF,. X, ..., F;.X,, generate another distribution which is also
involutive, and, hence, is associated with a class of locally decomposable multivector
fields whose representative is just Z, by construction. The assertion about the integral
submanifolds is then immediate.

(2) First observe that, as is 71-projectable, therF, restricts to a local flows™ in M; that
is, we haveF™ o t1 = 71 o F,. Now, for everyy : M — J¥E, integral section ok,
we can definey, : M — J¥*E by the relationF, o v = ¥, o FM, which is also a section
of 1, because

oy =ttoFoy o (FM T =FMottoy o (FM) 1 = FM o (FM)™ = 1dy

sincet! o ¥ = Idy. Then, observe that, by construction, ¥m = F,(Im) is an
integral submanifold off;, X5, and as is a section df', it is T1-transverse. Hence
Fr.. X3 (Which belongs to ket @Y, by lemma 3) is integrable (then locally decomposable),
and as its integral submanifolds are sectiongfit is ti-transverse, thu#,, X, €
Xrow(JYFE, Q).

O
General symmetries can be used for obtaining conserved quantities, as follows.
Proposition 4. If £ € Q"~1(J™E) is a first integral of a Hamiltonian syste@@ *E, Q)),
then so id_(Y)&, for every general symmetiy € X(JE).
Proof. For every first integrak € Q" Y(J¥E), andZ € ker" @), if Y € X(J¥E) is a
general symmetry, we have that
LELT)E =L([2, YDE+LY)L(2)E =L([2,YDE =0

since [2, Y] € ker" @Y, and as a consequence of proposition 3. a
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5. Noether’s theorem for multivector fields

There is another kind of symmetry which plays a relevant role, as generators of conserved
quantities.

Definition 4. An (infinitesimal) Cartanor Noether symmetryof a Hamiltonian system
(J¥E, Q)) is a vector fieldr € X(J¥*E) satisfyingL (Y)Y = 0.

Remarks.

e It is immediate to prove that, if;, Y, € ¥(J¥*E) are Cartan—Noether symmetries, then
sois [Y1, Yol

e Observe thatthe conditionk)2Y = 0is equivalent to demanding thaYDQ,Y isaclosed
m-form in J¥*E. Therefore, for every e J*E, there exists an open neighbourhood
U, > p, andéy € Q’"‘l(U,,), such that (Y)Y = d&y (on U,). Thus, a Cartan—
Noether symmetry of a Hamiltonian system is jusd@ally Hamiltonian vector fieldor
the multisymplectic forng2), andéy is the correspondinipcal Hamiltonian formwhich
is unique, up to a close@: — 1)-form.

Cartan—Noether symmetries have the following property.

Proposition 5. Let Y € X(J¥*E) be a Cartan—Noether symmetry of a Hamiltonian system
(J™E, Q)). Therefore:

(1) L(Y)@,Y is a closed form, hence, in an open getc J*E, there existy € Q" X(U)
such that_ (Y)®) = d¢y.
(2) Ifi(Y)QY = d&y, in an open set/ ¢ J™*E, then

LGy, =di(1)ey —&) =dey  (inU).

Proof.

(1) The first item is immediate since d£)®; = L(Y)d®, = 0.
(2) For the second item we have

L(re) =di(Y)e) +i(Y)de, =di(Y)®) —i(1)Q) =di(Y)8, —&).
Hence we can writéy = i(Y)®) — ¢y (up to a closedm — 1)-form). O

Remark.

e As a particular case, if for a Cartan—Noether symmeétrihe condition L(Y)®) = 0
holds, we can takéy = i(Y)®) . In this caseY is said to be amxact Cartan—Noether
symmetry

Cartan—Noether symmetries and general symmetries are closely related.

Proposition 6. Every Cartan-Noether symmetry of a Hamiltonian systéhiE, QY) is a
general symmetry.

Proof. LetY € X(J*E) be a Cartan—Noether symmetry. For evéne ker" Q, we have
that

i([Y, 2)Q) =L()i(2)Q) +(=1)*™i(2)L(Y)Qy =0
and thereforeY, Z] C ker" QY. O

Finally, the classicaNoether’s theorenof Hamiltonian mechanics can be generalized to
field theory.



8472 A Echeverra-Enriquez et al

Theorem 5 (Noether).If Y e X(J¥E) is a Cartan—Noether symmetry of a Hamiltonian
system(Jl*E,QhV), with i(Y)QY = dg&y, then, for every HDW-multivector fieldl,,
Xm(J*E), we have that

L(X3)éy =0
that is, any Hamiltoniarim — 1)-form &y associated with is a first integral of J* E, Q).

Proof. If Y € X(J**E) is a Cartan—Noether symmetry then
L(X3)&y = di(Xp)Er — (—D"i(Xp)dey = —(—D"i(Xp)i(Y)RQ) = —i(¥)i(X)Qy = 0.
a

It is interesting to remark that, to our knowledge, given a first integral of a Hamiltonian
system, there is no straightforward way of associating to it a Cartan—Noether syn¥metrg
main obstruction is that, given@ — 1)-form &, the existence of a solution for the equation
i(Y)Q) = d¢ is not assured (even in the ca@¢ being 1-nondegenerate). Hence, in general,
theconverse Noether theorezannot be stated for multisymplectic Hamiltonian systems.

Noether’s theorem associates first integrals to Cartan—Noether symmetries. But these
kinds of symmetries do not exhaust the set of (general) symmetries. As is known, in mechanics
there are dynamical symmetries which are not of Cartan type, which also generate conserved
quantities (see [29, 32, 33], for some examples). These are the so-ualtth symmetries
Different attempts have been made to extend Noether's theorem in order to include these
symmetries and the corresponding conserved quantities. Next we present a generalization of
the Noether theorem 5, which is based on the approach of [35] for mechanical systems.

First we introduce thhigher-order Cartan—Noether symmetrjgeneralizing definition 4
in the following way.

Definition 5. An(infinitesimal) Cartan—Noether symmetry of oraesf a Hamiltonian system
(J¥E, Q))is a vector fieldr € X(J*E) satisfying that:

(1) Y is a general symmetry.

(2) L"(Y)Q) =0, butL*¥(Y)QY # 0, fork < n.

Observe that Cartan—Noether symmetries of onder1 are not necessarily Hamiltonian
vector fields for the multisymplectic for@,’. Nevertheless we have the following proposition.

Proposition 7. If Y € X(J¥E) is a Cartan—Noether symmetry of ordenf a Hamiltonian
system(J ¥ E, QY), then the formL"~1(Y)i(Y)) € Q"(JE) is closed.

Proof. In fact, from definition 5 we obtain
0=L"(V)Q) =L"'(nLI)QY =L"1¥)di(Y)Qy =dL" (1))
O

Hence, this condition is equivalent to demanding that, for eyeey J**E, there exists
an open neighbourhodd, > p, andéy € df™~1(U,), such that E=1(¥)i(Y)Q) = d&y (on
U,). Then, the result stated in proposition 5 can be generalized as follows.

Proposition 8. LetY € X(J¥*E) be a Cartan—-Noether symmetry of oraenf a Hamiltonian
system(J ¥ E, QY). Therefore:

(1) L"(v)®) is a closed form, hence, in an open 8etc J*E, there existy € Q" 1(U)
such that." (Y)®) = d¢y.
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(2) If L Y(V)i(Y)QY = d&y, in an open set/ ¢ JY*E, then
L"(Y)®) =d(L" 1 (Y)i(Y)®) — &) = dty (in U).

Proof.
(1) The first item is immediate since 8(Y)®, = L"(Y)d®, = 0.
(2) For the second item we have
L"(Y)®) = L"Y{rLX)e) = L") (di(Y)e) +i(Y)de;)
=dL" ti()ey + L" Y 1)i(r)de)
=dL" M M)i(N)®) —dgy = d(L" T Mi(Y)Oy —&).
Hence we can writ€¢y = L"(V)i(Y)©) — ¢y. O
Then, theorem 5 can be generalized to include higher-order Cartan—Noether symmetries.

Theorem 6 (Noether).If Y e X(JY¥E) is a Cartan—Noether symmetry of order of
a Hamiltonian systemJ¥*E, QY), with L""1(Y)i(Y)Q) = dé&y, then, for every HDW-
multivector fieldX;; € ¥ (J¥E), we have that

L(X3)éy =0

that is, the(m — 1)-form &y associated witlY is a first integral of(J“* E, Q).

Proof. If Y € X(J¥*E) is a Cartan—Noether symmetry then it is a general symmetry, and then
[Y, X] = Z € kerQy. Therefore
L(X2)&y = (=) i(Xs)dy = (=1)" i (Xp)L" (i)
= ()"NXLL" M)y
= Li(XnL"2MIM L) =Y, Xy DL "2y
= L)Xy —I@)NL"?MiIM)KQY
and repeating the reasoning- 2 times we will arrive at the result
L(X2)Ey = (L)I(Xy) —i(2)" HT¥)Q) =0
since (X3)i(Y)R) = 0and (2)i(Y)Q) = 0. O
The study of symmetries of Hamiltonian multisymplectic systems, is, of course, a topic

of great interest. The general problem of a group of symmetries acting on a multisymplectic
manifold and the subsequent theory of reduction has been analysed in [17,18].

6. Restricted Hamiltonian systems

There are many interesting cases in field theories where the Hamiltonian field equations are
established not in the whole multimomentum phase sgatEg, but rather in a submanifold
jo : P — JYE, such thatP is a fibre bundle oveE (and M), and the corresponding
projectionst} : P — E andi} : P — M satisfy thatr! o jo = 73 andz! o jo = 73. In that
case we say tha/ *E, P, Q7)) is arestricted Hamiltonian systerwhereQ) := j5Qy .

Now we can pose a variational principle in the same way as for the Hamiltonian system
(J¥E, Q)), (but with P instead of/**E): the states of the field are the sectiongpfvhich
are critical for the functionallp : T'.(M, P) — R defined byHy (o) := fM wg@g, for every
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Yo € T.(M, P). These critical sections will be characterized by the condition (analogous to
(4)
Yei(X0)Q) =0 for every Xo e X(P).

Hence, considering multivector fields, connections and jet fiel@siistead of/ * E, we have
the following proposition.

Proposition 9. Let (J*E, P, 522) be a restricted Hamiltonian system. The critical section of
the above variational principle are sectiotig € I'.(M, P) satisfying the following equivalent
conditions:

(1) They are the integral sections of an integrable jet fi@ﬁ;l . P — JP satisfying
i) = 0.

(2) They are the integral sections of an integrable connecifjrsatisfying thai(Vy) Q) =
(m —1)Q5.

(3) They are the integral sections of a class of integrable Zattansverse multivector fields
{X%} c X™(P) such that(X9)Q2 = 0, for everyX?, € {X?}.

Proof. The proof is as for theorem 2. |

Note that the formQ? is m-degenerate but, in general, 7g-transverse and locally
decomposable multivector fiell9, € X" (P) such that {X9)29 = 0, does not necessarily
exist. Furthermore, the existence of multivector fields of this kind does not imply their
integrability. Nevertheless, it is possible for these integrable multivector fields to exist on
a submanifold of?. So we can state the following problem: to look for a submanifoteb P
where integrable HDW-multivector fieldis% € X™(P) exist; and then their integral sections
are contained ir§.

As afirst step, we do not consider the integrability condition. The procedure is algorithmic
(from now on we suppose that all the multivector fields are locally decomposable):

o First, letS; be the set of points aP where HDW-multivector fields do exist
(X)) =0 ”
(X)) =1/
We assume th&f; is a non-empty (closed) submanifold Bf
This is thecompatibility condition
e Now, denote byXyp, (P, S1) the set of multivector fields inP which are HDW-
multivector fields onS;. Let X% : 81 = A"TP|g be inXJ(P, Sy). If, in addition,
X% : 81 — A™TSy; thatis, X§, € X™(S1), then we say thak? is a solution on
S1. Nevertheless, this last condition is not assured except perhaps in a set of points
S, C §1 € P, which we will assume to be a (closed) submanifold, and which is defined
by

S = {y € P;3X2 € X™(P) such that{

S = {y € Sy; IXY, € X1 (P, S1) such thatx?(5) € A" T;S1}.

This is the so-calledonsistencyr tangency condition
o In this way, a sequence of (closed) submanifolds,c S; c --- C §; C P, is assumed
to be obtained, each one of them being defined as

Si = 1{j € S;_1; 3XY, € X1 (P, Si_1) such thatX? (7) € A" T5S;_1).

e There are two possible options for the final step of this algorithm, namely:
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(1) The algorithm ends by giving a submanifdig — P, with dimS; > m, (where
S; = N;>15:) and HDW-multivector fields), € X" (Sy). Sy is then called the
final constraint submanifold

(2) The algorithm ends by giving a submanifdgd with dim Sy < m, or the empty set.
Then there is no HDW-multivector fieldg?, € X" (S).

This procedure is called tleonstraint algorithm

The local treatment of this case shows significant differences to the general one. We again
have the system of equations for the coefficigits. As we have stated, this system is not
compatible in general, arff is the closed submanifold where itis compatible. Then, there are
HDW-multivector fields ons;, but the number of arbitrary functions on which they depend is
not the same as in the general case, since it depends on the dimenSiohotv the tangency
condition must be analysed in the usual way. Finally, the question of integrability must be
considered. To this end similar considerations as above must be made for the subnsanifold
instead of/*E.

Some of the problems considered in this and the above section have been treated in an
equivalent way, but using Ehresmann connections, in [25, 26].

As a final remark, concerning to the study of symmetries for restricted Hamiltonian
systems, results like those discussed in sections 4 and 5 would be applicable, in general, to this
situation, but for the subbundfy — M, and taking as symmetries vector fields X(J*E
which are tangent t6.

7. Hamiltonian formalism for Lagrangian systems

From the Lagrangian point of view, a classical field theory is described lmpitiguration
bundler : E — M, and alLagrangian densityvhich is az!-semibasion-form in J1E. A

Lagrangian density is usually written ds= £7w, where £ C*(JE) is theLagrangian
functionassociated witlf andw. Then aLagrangian systeris a couple((E, M; ), £). The
Poincae—Cartanm and (m + 1)-formsassociated with the Lagrangian densityre defined
using thevertical endomorphisry of the bundle/*E [8,12]:

Or =iOVL+L=0,+LecQ"JE) Q= —dO, € Q" (JLE).

In a natural chart i/1E we have

dE o 3 -
®£:mdyA/\d 1)CH—<WU3—£>d X
" I3
O£ B A m—1 L B A m—1
Q[;:—dev /\dy Ad x“_ayBE)v,j‘dy /\dy nd Xu

2 2 2
+ 0 vAde/\dmx+( o’ vA—8—£+ e )dyBAdmx.
duBavd Y dyBavt " 9yB  oxrduvp

The Lagrangian systemiisgularif . is 1-nondegenerate and, as a consequeiéé,, Q)
is a multisymplectic manifold [4]. Elsewhere the systerm@-regularor singular. The
regularity condition is equivalent to demanding that(g%(y)) # 0, for everyy € J'E.
(For more detalils see, for instance, [2,5,8,12-14, 34, §6]v).

As for Hamiltonian systems, a variational problem can be posed for a Lagrangian system,
which is called théHamilton principleof the Lagrangian formalism: the states of the field are
the (compact-supported) sectionsofvhich are critical for the functiondl : T'.(M, E) — R
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defined byL(¢) := fM(j1¢)*£, foreverygp € T'.(M, E). These (compact-supported) critical
sections are characterized by the condition

(Glo)i(X)Q, =0 forevery X € X(J'E)
which, in a natural system of coordinatesAhE, is equivalent to demanding thatsatisfy
the Euler—-Lagrange equations% i £\ — 0. Then [8,9, 25, 36] we have the
J

dxr duy ¢

following theorem.

Theorem 7. The critical sections of the Hamilton principle are canonical liftingsp : M —
JLE, of sectiong : M — E, which satisfy any one of the following conditions:

(1) They are the integral sections of an holonomic jet figld: J*E — J'J'E such that
iV, =0.

(2) They are the integral sections of an holonomic connectignsuch thati(V,)Q, =
(m — 1.

(3) They are the integral sections of a class of holonomic multivector figlgsc X" (J1E)
such thati (X /)2, = O, for everyX, € {X}.

X, € ¥"(JLE) is anEuler—Lagrange multivector fieltbr £ if it is semi-holonomic and
is a solution of the equatiortX )2, = 0. (The same terminology is also used for jet fields
and connections.) Then, using this theorem, it can be proved that [9, 25]:

o If ((E,M; ), L) is a regular Lagrangian system, then there exist classes of Euler—
Lagrange multivector fields fo£. In a local system these multivector fields depend
on N (m? — 1) arbitrary functions, and they are not integrable necessarily, except perhaps
on a submanifold < J'E, such that the integral sections arelin

e For singular Lagrangian systems, the existence of Euler—Lagrange multivector fields is
not assured, except perhaps on some submanifoied> J'E. Furthermore, locally
decomposable and!-transverse multivector fields, which are solutions of the field
equations, can exist (in general, on some submanifold'df), but none of them are
semi-holonomic (at any point of this submanifold). As in the regular case, although
Euler—Lagrange multivector fields exist on some submani$oltheir integrability is not
assured, except perhaps on another smaller submadifeds.

The Lagrangian and Hamiltonian formalisms are related by means of the corresponding
Legendre mapgFL : J'E — J™E. In order to define it, first we introduce thextended
Legendre mapFL : J'E — M in the following way [26]:

(FLYWZa,s -y Zi) == (Op)5(Za, ..., Zyy)
whereZy, ..., Z, € T E,andZy, ..., Z, € T;JLE are such that =12, = Z,,. (FL
can also be defined as the ‘first-order vertical Taylor approximation to £’ [5, 15]). Hence,
using the natural projectiopn : Mz = ATT'E — ATT*E/AGT'E = J¥E, we define
FL := o FL. Itslocal expression is
FL*x" = x* FLfyA = yA Fﬁ*pgza—i.
E)vu

Definition 6. Let ((E, M; ), £) be a Lagrangian system.

(1) ((E,M; ), L) is a regularor non-degeneratéagrangian system if"£ is a local
diffefomorphism. Elsewher& E, M; ), £) is a singular or degeneratd_agrangian
system. (This definition is equivalent to that given above.)

As a particular case((E, M; ), £) is a hyper-regulatLagrangian system if' L is a
global diffeomorphism.
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(2) A singular Lagrangian systefiE, M; ), £) is almost-regulaif:

(@) P :=FL(J'E) is a closed submanifold of** E.
(We will denote the natural imbedding hy: P — J*E.)

(b) FL is asubmersion onto its image.

(c) Foreveryy € JLE, the fibresF L~1(F L(y)) are connected submanifolds HtE.

__ Itcan be proved [5,26], that (£, M; ), £) is a hyper-regular Lagrangian system, then
FL(JYE) is a 1-codimensional embedded submanifold\afr, which is transverse to the
projectionu, and is diffeomorphic to'** E. This diffeomorphism is h= FL o F£~1 (which
is justu ™1, wheny is restricted taF £(J1E)), and it is a Hamiltonian section. Thus we can
construct the Hamilton—Cartan forms by makigdg = h*® andQ;, = h*Q. Then the couple
(J¥™E, Q) is said to be thélamiltonian systerassociated with the hyper-regular Lagrangian
system((E, M; =), £). Locally, this Hamiltonian section is specified by the local Hamiltonian
function H = py FL~" v} — FL ' £; then the local expressions of these Hamilton-Cartan
forms are (1), and the (non-covariant) expression of the Hamiltonian equations are (2). Of
courseFL*®, = O, andFL*Q;, = Q.

This construction can also be made as follows: given a conne&tiam the bundle
. E — M,letjy: J¥E — Msn be the associated linear section, &t = ;0.
Then we can define a unique Hamiltonian densityin two different but equivalent ways: by
making the differencgy —h, or by making F £~1)*£Y, whereg) is thedensity of Lagrangian
energyof the Lagrangian formalism constructed using the conneétioim any case, the form
0, = 0V — 1V, and henc&,, are the same as above (see [11]).

If ((E, M; ), £)is an almost-regular Lagrangian system, theesdricted Hamiltonian
systemJE, P, Q%) can be associated in a similar way [11, 26].

One expects both the Lagrangian and Hamiltonian formalism to be equivalent. As in
mechanics, the standard way of showing this equivalence consists in using the Legendre map.
First we can lift sections ot from E to J¥*E, as follows.

Definition 7. Let ((E, M; ), £) be a hyper-regular Lagrangian systemi,C the induced
Legendre transformationy : M — E a section ofr and jl¢ : M — J'E its canonical
prolongation toJ'E. TheLagrangian prolongatioaf ¢ to J**E is the section

jY¢:=FLo jl¢ : M — JVE.

(If ((E, M; ), £) is an almost-regular Lagrangian system, the Lagrangian prolongation of a
sectiong : M — Eto P is ji*¢ :=FLoo ji¢p : M — P.)

Theorem 8. (Equivalence theorem for sectionisgt ((E, M; 7r), £) and (J¥*E, Q) be the
Lagrangian and Hamiltonian descriptions of a hyper-regular system.

If a sectiong € I'.(M, E) is a solution of the Lagrangian variational problem (Hamilton
principle) then the sectiony = j¥*¢ = FL o j'¢ € I'.(M, J¥E) is a solution of the
Hamiltonian variational problem (Hamilton—Jacobi principle).

Conversely, ity € I'.(M, J¥E) is a solution of the Hamiltonian variational problem,
then the sectiopp = ttoy € I'.(M, E) is a solution of the Lagrangian variational problem.
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Proof. Bearing in mind the diagram

JE re

J*E

4 12)

If ¢ is a solution of the Lagrangian variational problem thighp)*i(X)Q2; = 0, for every
X € ¥(J'E) (theorem 7); therefore, &L is a local diffeomorphism,

0= (j')"i(X)Qr = (') I (X)(FLQ)
= (') FLY(FLIPX)Q) = (FLo j1¢) (X))
which holds for everyX’ € X(JY¥E) and thus, by (4))y = FL o jl¢ is a solution of the
Hamiltonian variational problem. (This proof also holds for the almost-regular case.)
Conversely, lety € T'.(M, J¥*E) be a solution of the Hamiltonian variational problem.
Reversing the above reasoning we obtain (Rat 2o y)*i(X)2; = 0, foreveryX e X(J1E),
and hence = FL 1oy € I'.(M, J'E) is a critical section for the Lagrangian variational

problem. Then, as we are in the hyper-regular casenust be an holonomic section,
o = jl¢ [9,25,36], and since (12) is a commutative diagrams tl oy € (M, E). O

Observe that every sectioh : M — J¥*E which is solution of the Hamilton—Jacobi
variational principle is necessarily a Lagrangian prolongation of a segtioWd — E.

Theorem 9. Let ((E, M;m), L) and (JY¥E,Q,) be the Lagrangian and Hamiltonian
descriptions of a hyper-regular system.

(1) (Equivalence theorem for jet fields and connectioniset ), and ), be the jet fields
solution of the Lagrangian and Hamiltonian field equations, respectively. Then

JYFLoY, =Yy o FL

(we say that the jet fieldg, and);, are F L-related). As a consequence, their associated
connection formsy, and V;, respectively, areg L-related too.

(2) (Equivalence theorem for multivector field$.3tX . € X" (J1E)andX, € X" (J*¥E) be
multivector fields solution of the Lagrangian and Hamiltonian field equations respectively.
Then

A"TFLo X, = fXyoFL
for somef € C*(J™E) (we say that the class¢X ;} and {X 5} are F L-related).

That is, we have the following (commutative) diagrams:

A"TJE ——— A"TJ™E JYE — JYJ¥™E)
A"TFL JIFL

xe| T X e ] Tom
FL FL

JE - JHE JYE —— JE
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Proof. The first item is a consequence of theorem 8, since the critical sections solutions of
the Lagrangian and Hamiltonian variational problems (whichfaferelated) are the integral
sections of the jet field¥, and), respectively (see also [26]).

The second item is an immediate consequence of the first one and the equivalence
between orientable and integrable jet fields and classes of non-vanishing, locally decomposable,
transverse and integrable multivector fields. O

8. Example

(See also [34]).

Most of the (quadratic) Lagrangian systems in field theories can be modelled as follows:
n . E — M is a trivial bundle (usualyf = M x RV) and thenr! : J'E — Eis a
vector bundle.g is a metric in this vector bundle, is a connection of the projectiont, and
f € C*(E) is a potential function. Then the Lagrangian function is

£5) = 3G —y @G, 7 — v @G + @ HG) (for y € JIE)

and in natural coordinates takes the form [34]

v

= 3ai ;M — v )P —yF () + £ ().

For simplicity, we consider a model where the matrix of the coefficieff}sis regular and
symmetric at every point (that isy,(y) = a4 (»)). This fact is equivalent to the non-
degeneracy of the metrig. The Legendre map associated with this Lagrangian system is
given by

FL*x" = x* FLAyh = yA FL*ply = a0 (E — v 2 (x))

and the local expression of the Hamilton—Cartan + 1)-form is (1), where the local
Hamiltonian function is

H—- (y)pApB f)

(herea;,” denote the coefficients of the inverse matrix@f})). Hence

— (3 Py — F()) d'x
Qh = dpA /\dy Ad™T 1x +d(; ,‘jf(y)pip‘l’g _f(y))/\dmx

and it is a multisymplectic form. Then, taking (6) as the local expression for representatives of
the corresponding classes of HDW-multivector figliis} X, (J1* E), their components
FA are

"

@) = phdy* Ad"1x,

aH
FA — ~AB

andG'; are related by the equations

OH 10aSk af
P _ _ W v
GAp__W_ 5 9y Pch"'m- (13)
This system allows us to isoladeof these components as functions of the remainiiig?—1);
and then it determines a family of (classes of) HDW-multivector fields. In order to obtain an
integrable class, the condition of integrabilRy= 0 (whereR is the curvature of the associated
connection) must hold; that is, equations (9) and (10) must be added to the last system.
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As a simpler case, we consider that the matrix of coefficierit8/igy) = §4%5,,,, (thatis,
we take an orthonormal frame for the mej; then we have thall = 6425, p'; py — f ().
In this case, equation (13) reduces to

of
L
GA,o = m
From this system we can isolateof the coefficients5’;
1, those for whichu = v = 0: Thus

GO _ i _rfaABGM
A0 — ayA Bu*

forinstance, ifu,v=0,1,...,m—

!

n=1
Therefore the HDW-multivector fields are

_ et a 8A38 v 8 80 af milaAB 13 a
Xn= N\ 50 * wPEg R " O W_X; Gy apl

n=0 =

., 0 ad
t 2 G%na—HZG’éna—n)-
u=n#0 B pe#n Pc
Now, if we look for integrable Euler—Lagrange multivector fields, the integrability
conditions (9) and (10) must be imposed.
The Lagrangian formalism for this model (using multivector fields) has been studied in [9].
Then, the corresponding (semi-holonomic) Euler—Lagrange multivector figldgven there

by
m—1 m—1
d 4 0 acl Of -p| 9
XE:/\<8)CM+U”W+80M8 ay—C—Z;SCDGW m

n=0
- ad - ad
* Z Gﬁnm + ZQ%W)
u=n#0 noop#En n

can be compared with the HDW-multivector fields here obtained, observing that, in fact, they
are related as stated in the second item of theorem 9.

As a final remark, we can obtain some typical first integrals, by applying Noether’s
theorem. As infinitesimal generators of symmetries we take the followwppjectable vector
fields inE:

3 3 L0
Z,=— Zyy =x" —xV—
axH axv axH
(they are isometries of the metgand symmetries of the potential functignwhich generate
space—time translations and rotations), and whose canonical liftings f are the vector

fields

0 0 0 0 0

— M v

Y, = Y, =x X +pt—— — ph——.
T g v oxv " axn Pagpn T Pagpn

In fact, they are Cartan—Noether symmetries satisfying thgt 10, = 0and L(Y,,,)®) =0,
and their corresponding associated first integrals are then

%_Yﬂ = i(Yﬂ)G)IY = —PfxdyA A dmizxup + Hdm71X;L
&v., = i(Y,)®) = x*(—phdy? Ad" %x,, + Hd" 'x,)
—x"(=phdy? Ad"2x,, + Hd" x,)

= )C'uéyv — )CVSYM.
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If S — J¥E is an integral submanifold of the system, this means that

Jsdéy, =0 Jsd(x"&y, — x"&y,) = dx" A jg&y, —dx" A j5&y, = 0.

9. Conclusions

We have used the relation between jet fields (connections) and multivector fields in jet bundles
to give alternative geometric formulations of the Hamiltonian equations of first-order classical
field theories, and study their characteristic features. In particular:

e The difference between the HDW equations and the covariant form of the Hamiltonian
equations is analysed and thoroughly clarified from a geometrical point of view.

e We prove that the Hamiltonian field equations can be written in three equivalent geometric
ways: using multivector fields iti** E (the multimomentum bundle of the Hamiltonian
formalism), jet fields in/1(J*E) or their associated Ehresmann connectiongite.

These descriptions allow us to write these field equations in an analogous way to the
dynamical equations for (time-dependent) mechanical systems.

¢ Using the formalism with multivector fields, we show that the field equatioxg iy =
0, with X3, € X¥"(JYE) locally decomposable and!-transverse, have solution
everywhere in/*E, which is not unique; that is, there are classesiBW-multivector
fieldswhich are solution of these equations. Nevertheless, these multivector fields are not
necessarily integrable everywherefti E. These features are significant differences in
relation to the analogous situation in mechanics.

e The concept of (infinitesimal) symmetry of a Hamiltonian systeni E, @) in field
theory is introduced and discussed from different points of view. The relation between
Cartan—Noether symmetrig¢those leading to first integrals of Noether type) gederal
symmetriehas been discussed.

e In particular, a version of Noether's theorem (in the Hamiltonian formalism) using
multivector fields is proved. This statement is also generalized in order to include first
integrals arising from higher-order Cartan—Noether symmetries.

e We have analysed the caserestricted Hamiltonian systenfge., those such that the
Hamiltonian equations are stated in a subburRlle> E — M of J*E). In this case,
not even the existence of HDW-multivector field is assured, and an algorithmic procedure
in order to obtain a submanifold ¢f where HDW-multivector fields exist, is outlined.

Of course the solution is not unique, in general.

e For Hamiltonian systems associated with hyper-regular Lagrangian systems in field theory,
we have proved different versions of the one-to-one correspondence between the solutions
of field equations in both formalisms; namely: thguivalence theorerfior sections, jet
fields and connections, and multivector fields.

Hence, this work completes the results of [9], where the special features of the Lagrangian
formalism of first-order Field theories in terms of multivector fields were studied.

Appendix

(See [9], and also [3,4] and [19]).
Let E be am-dimensional differentiable manifold. Sections'df(TE) (withl < m < n)
are calledn-multivector fieldsn E. We will denote byX™ (E) the set ofn-multivector fields
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in E. GivenY € X" (E), for everyp € E, there exists an open neighbourhddgl C E and
Yi,...,Y, € X(U,) such that

Y=Y fiyaLAY,
P ALig < <ig <1
with fix-in e C®(U,) andm < r < dimE. A multivector fieldY € X™(E) is locally
decomposablef, for every p € E, there exists an open neighbourhobg C E and
Yi,...,Y, € X(Up) suchthatl = Y1 A ... AY,.

P

If Q € Q¥(E) is a differentiable-form in E, we can define the contraction
e = ST AL AYQ= Y ()L LLiY,)Q

P ALig < <i <1 1<ii < <i <r
if Kk > m, and equal to zero i < m. Thek-form Q is said to bej-nondegeneratéfor
1< j<k-—1)if foreveryp € E andY € X/(E), i(¥,)2, = 0<% Y, = 0. The graded
bracket

[d,i(Y)] = di(Y) — (=1)™i(Y)d := L(Y)

defines an operation of degree — 1 which is called thelie derivativerespect toy. If
Y € ¥/(E) andX e ¥/(E), the graded commutator of(K) and L(X) is another operation
of degree + j — 2 of the same type, i.e., there will existgia+ j — 1)-multivector denoted by
[Y, X] such that

[L(Y), LOO] =LY, XD).

The bilinear assignmer¥, Y — [X, Y] is called theSchouten—Nijenhuis brackef X, Y. If
X, Y andZ are multivector fields of degreésj, k, respectively, then the following properties
hold:

(D) [X, Y] = =(=D)@PU*Dy, X].
Q) [X, Y AZ] =[X,Y]AZ+(=1)DUDY A[X, Z].
(3) (=) PEVIX, [y, Z]) + (=DHYUPEV[y, [Z, X]) + (=D)*PUD[Z, [X, Y]] = 0.

Moreover, ifX € X/(E) andY € X" (E), then
i([X, YD = L(X)i(Y)2 — (=1)™i(Y)L(X).

A non-vanishingm-multivector fieldY € X™(E) and am-dimensional distribution
D cC TE arelocally associatedf there exists a connected open setc E such that’|y is a
section of A" D|y. If Y, Y’ € X™(E) are non-vanishing multivector fields locally associated
with the same distributiorD, on the same connected open &etthen there exists a non-
vanishing functionf € C*°(U) such thatr’ = fY. This fact defines an equivalence relation
in the set of non-vanishing-multivector fields inE, whose equivalence classes will be denoted
by {Y}y. Then, there is a bijective correspondence between themetiohensional orientable
distributionsD in TE and the set of the equivalence clas§gs: of non-vanishing, locally
decomposable:-multivector fields inE. The distribution associated with the cld33y is
denotedDy (Y). If U = E we writeD(Y).

A submanifoldS — E, with dim S = m, is said to be an integral manifold fe X" (E)
if, for every p € S, Y, spansA™T,S. Y is an integrable multivector field on an open set
U C E if, for every p € U, there exists an integral manifotl— U of Y, withp € S. Y is
integrable if it is integrable iiE. Y is involutive on a connected open gétC F ifitis locally
decomposable ity and its associated distributidhy, (Y) is involutive. Y is involutive if it is
involutive onE. IfaY € X™(E) is integrable, then so is every other in its equivalence class
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{Y'}, and all of them have the same integral manifolds. Moredwehenius’ theorenallows
us to say that a non-vanishing and locally decomposable multivector field is integrable on a
connected open sét C E if, and only if, it is involutive onU.

Now, letw : E — M be a fibre bundle.Y € X™(E) is said to ber-transversdf, at
every pointy € E, (i(Y)(7*w)), # 0, for everyw € Q"(M) with w(m(y)) # 0. Then, if
Y € X" (E) is integrable,Y is w-transverse if, and only if, its integral manifolds are local
sections ofr : E — M. Inthiscase, ifp : U C M — E is a local section withp(x) = y
and¢ (U) is the integral manifold of throughy, then T,(Im ¢) is D, (Y).

In Hamiltonian field theory we are interested in multivector field§in J¥*E — M.
Recall that aonnectiorin J*E is one of the following equivalent elements: a global section
Y J¥E — JYJ¥™E) of the projectionJY}(J¥E) — JY™E (ajet field), a subbundle
H(JYE) of T/¥E such that T¥E = V(z!) @ H(J¥E) (which is called ahorizontal
subbundleand it is also denoted 9 ()’) when considered as the distribution associated with
), or atl-semibasic 1-fornv on J¥*E with values in 7 E, such thaWV*a = «, for every
71-semibasic forna € Q1(J¥*E) (theconnection fornor Ehresmann connectiynA jet field
Y J¥E — JY(J™E) (or a connectiorV) is orientableif D()) is an orientable distribution
on J¥*E. Then we have the following theorem.

Theorem 10. There is a bijective correspondence between the set of orientable jet fields
Y : J¥E — JYJ¥™E) (or orientable connection® in ! : J¥E — M) and the

set of the equivalence classes of locally decomposabler &tiinsverse multivector fields

(X} c ¥"(JY¥E) (they are characterized by the fact th&()) = D(X)). Then,) is
integrable, if, and only if, so iX, for everyX < {X}.

The expression for a representative multivector fiéldf the clasq X} associated with a

jetfieldy : J¥E — JYJVE)is X = A, (% +FpL+ G‘g#%).

Acknowledgments

We wish to thank Professor M Feéandez-R&ada for clarifying some questions about
symmetries of mechanical systems. We also thank Mr Jeff Palmer for his assistance in preparing
the English version of the manuscript. We are grateful for the financial support of the CICYT
TAP97-0969-C03-01.

References

[1] Awane A 1992k-symplectic structure3. Math. Phys32 4046-52

[2] Binz E, Sniatycki J and Fisher H 198%e Geometry of Classical Fiel§@msterdam: North-Holland)

[3] Cantrijn F, Ibot L A and de Lén M 1996 Hamiltonian structures on multisymplectic manifdRisd. Sem.
Math. Univ. Pol. Torindb4 225-36

[4] Cantrijn F, Ibot L A and de Lén M 1999 On the geometry of multisymplectic manifolsisst. Math. Soc. Ser.
66 303-30

[5] Carifiena J F, Crampin M and Ibort LA 1991 On the multisymplectic formalism for first order field theiffes
Geom. Appll 345-74

[6] Dieudonne J 197&lements d’Analyseol IV (Paris: Gauthier-Villars)

[7]1 Echeverta-Eniquez A and Miéioz-Lecand M C 1992 Variational calculus in several variables: a Hamiltonian
approachAnn. Inst. Henri Poinca® 56 27-47

[8] Echeverfa-Eniquez A, Muioz-Lecand M C and Roran-Roy N 1996 Geometry of Lagrangian first-order
classical field theorieBortschr. Phys44 235-80

[9] Echeverfa-Eniquez A, Muioz-Lecand M C and Roman-Roy N 1998 Multivector fields and connections setting
lagrangian equations for field theoriésMath. Phys394578-603

—



8484 A Echeverra-Enriquez et al

[10] Echeveria-Eniquez A, Miioz-Lecand M C and Roran-Roy N 1999 On the multimomentum bundles and the
legendre maps in field theori®seprint math-ph/9904007 (to be publishedRep. Math. Phy}.

[11] Echeverra-Eniquez A, Muioz-Lecanda M C and Ramn-Roy N 1999 Geometry of multisymplectic
Hamiltonian first-order field theorieRreprint DMAT-UPC

[12] GardaP L 1974 The PoincarCartan invariantin the calculus of variati@smp. Math. Convegno di Geometria
Simplettica e Fisica Matematica (INDAM) (Rome, 19V8)14 (London: Academic) pp 219-46

[13] Giachetta G, Mangiarotti L and Sardanashvily G 198w Lagrangian and Hamiltonian Methods in Field
Theory(Singapore: World Scientific)

[14] Goldschmidt H and Sternberg S 1973 The Hamilton—Cartan formalism in the calculus of vartionsst.
Fourier Grenoble23203-67

[15] Gotay M J, Isenberg J, Marsden J E, Montgomerﬁﬁﬁatycki J and YasskiP B 1997 Momentum maps and
classical relativistic fields I: covariant theoBIMMSY Preprintphisics/9805040

[16] Gunther C 1987 The polysymplectic Hamiltonian formalism in the field theory and the calculus of variations I:
the local casd. Diff. Geom2523-53

[17] Hrab& S P 1999 On a multisymplectic formulation of the classical BRST symmetry for first-order field theories
(Part 1): algebraic structurd®reprintmath-ph/9901012

[18] Hrab& S P 1999 On a multisymplectic formulation of the classical BRST symmetry for first-order field theories
(Part I1): geometric structurd@reprint math-ph/9901013

[19] Ibort L A, Echeverfa-Eniquez A, Muioz-Lecand M C and Rorman-Roy N 1998 Invariant forms and
automorphisms of multisymplectic manifol@seprint math-dg/9805040

[20] Kanatchikov | 1993 On the canonical structure of the De Donder-Weyl covariant Hamiltonian formulation of
field theory I. Graded Poisson brackets and equations of mBtieprint PITHA 93/41, hep-th/9312162

[21] Kanatchikov | 1995 From the Poin@&Cartan form to a Gerstenhaber algebra of the Poisson brackets in field
theoryProc. 13th Int. Workshop on Geometric Methods in Phy@isw York: Plenum)

[22] Kanatchikae | V 1997 On field theoretic generalizations of a Poisson algBega Math. Phy240 225

[23] Kanatchiker | V 1998 Canonical structure of classical field theory in the polymomentum phaseRepc#lath.
Phys.4149-90

[24] Kijowski J and Tulczyjey W M 1979 A Symplectic Framework for Field Theories (Lecture Notes in Physics
vol 170)(Berlin: Springer)

[25] de Ledbn M, Maiin-Solano J and MarrerJ C 1995 Ehresmann connections in classical field theBres 3rd
Fall Workshop: Differential Geometry and its Applications (Anales t&da, Monograifas vol 2)pp 73-89

[26] de Ledbn M, Maiin-Solano J and Marrer] C 1996 A geometrical approach to classical field theories: a constraint
algorithm for singular theorieBroc. on New Developments in Differential Geometd/L Tamassi and
J Szenthe (Dordrecht: Kluwer) pp 291-312

[27] de Lebn M and Marin de Diego D 1996 Symmetries and constant of the motion for singular Lagrangian systems
Int. J. Theor. Phys35975-1011

[28] de Ledbn M, Merino E, Oubiia J A, Rodrigus P R and Salgado M 1998 Hamiltonian system&-aosymplectic
manifoldsJ. Math. Phys39 876-93

[29] Lopez C, Mafinez E and Raada M F 1999 Dynamical symmetries, non-Cartan symmetries and
superintegrability of the-dimensional harmonic oscillatdr Phys. A: Math. Ger821241-9

[30] Marsden J E and Shkoller S 1999 Multisymplectic geometry, covariant Hamiltonians and water Matles
Proc. Camb. Phil. Sod25553-75

[31] Puta M 1988 Some remarks on thesymplectic manifold§ensor N. S47 109-15

[32] Rahada M F 1995 Integrable three particle systems, hidden symmetries and deformations of the Calogero—Moser
systemJ. Math. Phys36 35413558

[33] Rahada M F 1995 Superintegrable = 2 systems, quadratic constants of motion, and potential of Drach
J. Math. Phys384165-78

[34] Sardanashvily G 1996eneralized Hamiltonian Formalism for Field Theory. Constraint SystSgapore:
World Scientific)

[35] Sarlet W and Cantrijn F 1981 Higher-order Noether symmetries and constants of the daéthoyrs. A: Math.
Gen.14479-92

[36] Saundes D J 1989The Geometry of Jet Bundles (London Math. Soc. Lecture Notes Series v(Cad®)ridge:
Cambridge University Press)



